Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Cancer Res Ther ; 18(7): 1835-1844, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2201875

ABSTRACT

The human gut microbiota represents a complex ecosystem that is composed of bacteria, fungi, viruses, and archaea. It affects many physiological functions including metabolism, inflammation, and the immune response. The gut microbiota also plays a role in preventing infection. Chemotherapy disrupts an organism's microbiome, increasing the risk of microbial invasive infection; therefore, restoring the gut microbiota composition is one potential strategy to reduce this risk. The gut microbiome can develop colonization resistance, in which pathogenic bacteria and other competing microorganisms are destroyed through attacks on bacterial cell walls by bacteriocins, antimicrobial peptides, and other proteins produced by symbiotic bacteria. There is also a direct way. For example, Escherichia coli colonized in the human body competes with pathogenic Escherichia coli 0157 for proline, which shows that symbiotic bacteria compete with pathogens for resources and niches, thus improving the host's ability to resist pathogenic bacteria. Increased attention has been given to the impact of microecological changes in the digestive tract on tumor treatment. After 2019, the global pandemic of novel coronavirus disease 2019 (COVID-19), the development of novel tumor-targeting drugs, immune checkpoint inhibitors, and the increased prevalence of antimicrobial resistance have posed serious challenges and threats to public health. Currently, it is becoming increasingly important to manage the adverse effects and complications after chemotherapy. Gastrointestinal reactions are a common clinical presentation in patients with solid and hematologic tumors after chemotherapy, which increases the treatment risks of patients and affects treatment efficacy and prognosis. Gastrointestinal symptoms after chemotherapy range from nausea, vomiting, and anorexia to severe oral and intestinal mucositis, abdominal pain, diarrhea, and constipation, which are often closely associated with the dose and toxicity of chemotherapeutic drugs. It is particularly important to profile the gastrointestinal microecological flora and monitor the impact of antibiotics in older patients, low immune function, neutropenia, and bone marrow suppression, especially in complex clinical situations involving special pathogenic microbial infections (such as clostridioides difficile, multidrug-resistant Escherichia coli, carbapenem-resistant bacteria, and norovirus).


Subject(s)
COVID-19 , Microbiota , Neoplasms , Aged , Humans , Bacteria , Consensus , Escherichia coli , Gastrointestinal Tract , Neoplasms/drug therapy , China
3.
Cell Res ; 31(10): 1047-1060, 2021 10.
Article in English | MEDLINE | ID: covidwho-1380899

ABSTRACT

The outbreak of SARS-CoV-2 (SARS2) has caused a global COVID-19 pandemic. The spike protein of SARS2 (SARS2-S) recognizes host receptors, including ACE2, to initiate viral entry in a complex biomechanical environment. Here, we reveal that tensile force, generated by bending of the host cell membrane, strengthens spike recognition of ACE2 and accelerates the detachment of spike's S1 subunit from the S2 subunit to rapidly prime the viral fusion machinery. Mechanistically, such mechano-activation is fulfilled by force-induced opening and rotation of spike's receptor-binding domain to prolong the bond lifetime of spike/ACE2 binding, up to 4 times longer than that of SARS-S binding with ACE2 under 10 pN force application, and subsequently by force-accelerated S1/S2 detachment which is up to ~103 times faster than that in the no-force condition. Interestingly, the SARS2-S D614G mutant, a more infectious variant, shows 3-time stronger force-dependent ACE2 binding and 35-time faster force-induced S1/S2 detachment. We also reveal that an anti-S1/S2 non-RBD-blocking antibody that was derived from convalescent COVID-19 patients with potent neutralizing capability can reduce S1/S2 detachment by 3 × 106 times under force. Our study sheds light on the mechano-chemistry of spike activation and on developing a non-RBD-blocking but S1/S2-locking therapeutic strategy to prevent SARS2 invasion.


Subject(s)
COVID-19/diagnosis , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Tensile Strength , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/immunology , Binding Sites , COVID-19/therapy , COVID-19/virology , Humans , Hydrogen-Ion Concentration , Immunization, Passive , Molecular Dynamics Simulation , Protein Binding , Protein Domains/immunology , Protein Subunits/chemistry , Protein Subunits/immunology , Protein Subunits/metabolism , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Virus Internalization , COVID-19 Serotherapy
4.
Immunity ; 54(6): 1304-1319.e9, 2021 06 08.
Article in English | MEDLINE | ID: covidwho-1246001

ABSTRACT

Despite mounting evidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) engagement with immune cells, most express little, if any, of the canonical receptor of SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2). Here, using a myeloid cell receptor-focused ectopic expression screen, we identified several C-type lectins (DC-SIGN, L-SIGN, LSECtin, ASGR1, and CLEC10A) and Tweety family member 2 (TTYH2) as glycan-dependent binding partners of the SARS-CoV-2 spike. Except for TTYH2, these molecules primarily interacted with spike via regions outside of the receptor-binding domain. Single-cell RNA sequencing analysis of pulmonary cells from individuals with coronavirus disease 2019 (COVID-19) indicated predominant expression of these molecules on myeloid cells. Although these receptors do not support active replication of SARS-CoV-2, their engagement with the virus induced robust proinflammatory responses in myeloid cells that correlated with COVID-19 severity. We also generated a bispecific anti-spike nanobody that not only blocked ACE2-mediated infection but also the myeloid receptor-mediated proinflammatory responses. Our findings suggest that SARS-CoV-2-myeloid receptor interactions promote immune hyperactivation, which represents potential targets for COVID-19 therapy.


Subject(s)
COVID-19/metabolism , COVID-19/virology , Host-Pathogen Interactions , Lectins, C-Type/metabolism , Membrane Proteins/metabolism , Myeloid Cells/immunology , Myeloid Cells/metabolism , Neoplasm Proteins/metabolism , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , COVID-19/genetics , Cell Line , Cytokines , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Inflammation Mediators/metabolism , Lectins, C-Type/chemistry , Membrane Proteins/chemistry , Models, Molecular , Neoplasm Proteins/chemistry , Protein Binding , Protein Conformation , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship
5.
Int Immunopharmacol ; 88: 106873, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-1002650

ABSTRACT

BACKGROUND: COVID-19 characterized by refractory hypoxemia increases patient mortality because of immunosuppression effects. This study aimed to evaluate the efficacy of immunomodulatory with thymosin α1 for critical COVID-19 patients. METHODS: This multicenter retrospective cohort study was performed in 8 government-designated treatment centers for COVID-19 patients in China from Dec. 2019 to Mar. 2020. Thymosin α1 was administrated with 1.6 mg qd or q12 h for >5 days. The primary outcomes were the 28-day and 60-day mortality, the secondary outcomes were hospital length of stay and the total duration of the disease. Subgroup analysis was carried out according to clinical classification. RESULTS: Of the 334 enrolled COVID-19 patients, 42 (12.6%) died within 28 days, and 55 (16.5%) died within 60 days of hospitalization. There was a significant difference in the 28-day mortality between the thymosin α1 and non-thymosin α1-treated groups in adjusted model (P = 0.016), without obvious differences in the 60-day mortality and survival time in the overall cohort (P > 0.05). In the subgroup analysis, it was found that thymosin α1 therapy significantly reduced 28-day mortality (Hazards Ratios HR, 0.11, 95% confidence interval CI 0.02-0.63, P=0.013) via improvement of Pa02/FiO2 (P = 0.036) and prolonged the hospital length of stay (P = 0.024) as well as the total duration of the disease (P=0.001) in the critical type patients, especially those aged over 64 years, with white blood cell >6.8×109/L, neutrophil >5.3×109/L, lymphocyte < 0.73 × 109/L, PaO2/FiO2 < 196, SOFA > 3, and acute physiology and chronic health evaluation (APACHE) II > 7. CONCLUSION: These results suggest that treatment with thymosin α1 can markedly decrease 28-day mortality and attenuate acute lung injury in critical type COVID-19 patients.


Subject(s)
Adjuvants, Immunologic/therapeutic use , Coronavirus Infections/drug therapy , Critical Care/methods , Pneumonia, Viral/drug therapy , Thymalfasin/therapeutic use , APACHE , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/adverse effects , Aged , Betacoronavirus , COVID-19 , China/epidemiology , Cohort Studies , Coronavirus Infections/immunology , Coronavirus Infections/mortality , Critical Illness , Female , Humans , Male , Middle Aged , Mortality/trends , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/mortality , Proportional Hazards Models , Retrospective Studies , SARS-CoV-2 , Thymalfasin/administration & dosage , Thymalfasin/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL